91件中 41 - 50件表示
  • コラーゲン

    コラーゲンから見たラミニン

    コラーゲンは、ES-D3株などの胚性幹細胞を無血清条件で培養する際にディッシュにコーティングすることで幹細胞の足場となり、幹細胞の未分化性維持および幹細胞の増殖を促進する働きがあることが論文により報告されている。また、米国国立衛生研究所(NIH)による2006年の報告ではヒト胚性幹細胞の無血清培養を行う際にはラミニン-111とIV型コラーゲンを主成分とするマトリゲルによる培養を行うことで胚性幹細胞の未分化性を維持した状態で増殖させる手法が多数紹介されている。同時に精製されたラミニン (laminin) あるいはIV型コラーゲンを使用した培養法が存在することについて述べられている。コラーゲン フレッシュアイペディアより)

  • コラーゲン

    コラーゲンから見た上皮組織

    IV型コラーゲン :非線維性コラーゲン。基底膜を構成する主成分であり、網目状のネットワークを形成し、基底膜の骨格構造を支えている。基底膜は上皮組織の裏打ち構造で、上皮細胞の足場になる。コラーゲン フレッシュアイペディアより)

  • コラーゲン

    コラーゲンから見た電子顕微鏡

    線維性コラーゲン分子が、少しずつずれてたくさん集まり、線維を作ったものをコラーゲン繊維(線維) (collagen fibril) と呼ぶ。例えば、骨や軟骨の中のコラーゲンは、このコラーゲン線維をつくっており、骨基質、軟骨基質にびっしりと詰まっている。主成分は軟骨以外の組織ではI型コラーゲン、軟骨ではII型コラーゲン分子である。V/XI型コラーゲン分子やIX/XII/XIV型コラーゲンも含まれる。コラーゲン線維は透過型電子顕微鏡で観察することができる。コラーゲン線維には、ほぼ65 nm周期の縞模様が観察される。コラーゲン線維の太さは通常、数十〜百数十 nm程度である。この太さは、そのコラーゲン線維を作っているコラーゲンの各型の割合やプロテオグリカンなどによって決まることがわかっている。コラーゲン フレッシュアイペディアより)

  • コラーゲン

    コラーゲンから見たスジ肉

    コラーゲンを含む食品としては、肉類(特に、皮・軟骨・骨・筋。鶏皮、鶏軟骨、スジ肉)、魚類(特に、皮・骨。サケ、うなぎ)、ゼラチン、ゼリー(増粘多糖類ではなくゼラチンで作ったものに限る)が挙げられている。コラーゲン フレッシュアイペディアより)

  • コラーゲン

    コラーゲンから見たゼリー

    コラーゲンを含む食品としては、肉類(特に、皮・軟骨・骨・筋。鶏皮、鶏軟骨、スジ肉)、魚類(特に、皮・骨。サケ、うなぎ)、ゼラチン、ゼリー(増粘多糖類ではなくゼラチンで作ったものに限る)が挙げられている。コラーゲン フレッシュアイペディアより)

  • コラーゲン

    コラーゲンから見た原生代

    コラーゲンが地球で初めて誕生したのは、原生代後期の全球凍結後(6億〜8億年前)と考えられている。コラーゲンの産生には大量の酸素の供給が必要であるが、全球凍結以前は地球においてはコラーゲンを作り出せるだけの高濃度の酸素が蓄積されていなかった。そのためそれまでの生物の進化は単細胞生物までに留まっていた。そして全球凍結の状態が終わり、急激な気候変動の影響で大量に酸素が作られ地球に蓄積した。この影響により単細胞生物がコラーゲンを作り出す事に成功し、細胞同士の接着に利用され、単細胞生物の多細胞化が促進された。今日に見られる多細胞生物(動物・植物・原生生物・真菌類)は全てこのコラーゲンの生産に成功した種の子孫であると考えられている。(ただしその子孫である植物は細胞間接着にコラーゲンを用いず、セルロースを用いており、コラーゲンを細胞間接着として利用している生物は動物と一部の原生生物に限られている)コラーゲン フレッシュアイペディアより)

  • コラーゲン

    コラーゲンから見た補酵素

    ヒドロキシプロリン・ヒドロキシリジン残基はいずれもタンパク合成の際に組み込まれるのではなく、まずそれぞれプロリン・リジン残基の形で合成され、タンパク鎖が形成された後で小胞体内で酸化酵素により付加される(翻訳後修飾)。またこの反応の際にはビタミンCを補酵素として、鉄を補因子として必要とするため、L-グロノラクトンオキシダーゼ遺伝子の活性がないヒトではビタミンC欠乏によって正常なコラーゲン合成ができなくなり、壊血病を引き起こす。コラーゲン フレッシュアイペディアより)

  • コラーゲン

    コラーゲンから見た粗面小胞体

    細胞内でのコラーゲンの産生には、様々な酵素分子やシャペロン分子が関与している。ヒトのコラーゲンのなかでは最も大量に存在するI型コラーゲン分子の場合、COL1A1とCOL1A2の2種類の遺伝子から合成されたmRNAが細胞質中のリボソームによって翻訳が開始され、翻訳されたシグナルペプチドとシグナルリコグニションパーティクル(signal recognition particle: SRP)によって翻訳が停止した後、粗面小胞体 (rER)にリボソームが結合してSRPが遊離して翻訳が再開され、小胞体内腔に取り込まれ、ゴルジ体に輸送され修飾を受けた後、細胞外に分泌される。小胞体内でC-プロペプチドによってプロα1(I)鎖とプロα2(I)鎖が通常は2:1の比でプロテインジスルフィドイソメラーゼ(PDI)EC 5.3.4.1の触媒反応によって鎖間ジスルフィド結合を形成する。3本鎖を巻く過程で、プロコラーゲン-プロリンジオキシゲナーゼ(プロリル4ーヒドロキシラーゼ)によって、-Gly-Xaa-Yaa-のYaaの位置にあるプロリン残基が水酸化されて4?ヒドロキシプロリン残基になる。そのほかに、Xaaの位置のプロリン残基を修飾するプロリル3ーヒドロキシラーゼ(P3H1, P3H2, P3H3)や、リジルヒドロキシラーゼ1-3 (Lysyl hydroxylase, procollagen-lysine 5-dioxygenase)、ヒドロキシリジン残基にガラクトース残基を付加するガラクトシラーゼ、ガラクトシルヒドロキシリジン残基にグルコース残基を付加するグルコシラーゼといった翻訳後修飾酵素が必要である。また小胞体内のタンパク質サイクロフィリンbやCRTAPの劣性遺伝子変異が骨形成不全症を引き起こすことが知られている。コラーゲン フレッシュアイペディアより)

  • コラーゲン

    コラーゲンから見た国立健康・栄養研究所

    コラーゲンを多く含む健康食品が、しばしば皮膚の張りを保つ、関節の痛みを改善すると謳い、「個人の感想」との注釈や「体験談」の説明付きで販売されている。しかし、ヒトでの信頼できるほどの有効性について国立健康・栄養研究所はコラーゲンを食べても「美肌」「関節」に期待する効果が出るかどうかは不明であるとの見解を示している。コラーゲンには必須アミノ酸のトリプトファン残基が含まれておらず、アミノ酸スコアは0である。また、栄養素としてコラーゲンの生成に必要な量を摂取したとしても、体内でコラーゲンが生成されるかはタンパク質をアミノ酸に消化分解する異化 (生物学)、アミノ酸からタンパク質を構築する同化 (生物学)の機能による。コラーゲン フレッシュアイペディアより)

  • コラーゲン

    コラーゲンから見た細胞外基質

    コラーゲン(、)は、主に脊椎動物の真皮、靱帯、腱、骨、軟骨などを構成するタンパク質のひとつ。多細胞動物の細胞外基質(細胞外マトリクス)の主成分である。体内に存在しているコラーゲンの総量は、ヒトでは、全タンパク質のほぼ30%を占める程多い。また、コラーゲンは体内で働くだけでなく人間生活に様々に利用されている。ゼラチンはコラーゲンを変性させたものであり、食品、化粧品、医薬品など様々に用いられている。コラーゲン フレッシュアイペディアより)

91件中 41 - 50件表示

「コラーゲン」のニューストピックワード