184件中 51 - 60件表示
  • タンパク質

    タンパク質から見た必須アミノ酸

    このほか、システイン、シスチン、必須アミノ酸であるメチオニンに由来する硫黄の組成比が高く、さらにリン酸の形でタンパク質に結合されているリンも多い。ジブロモチロシンに由来する臭素、ジヨードチロシン、トリヨードチロシン、チロキシンに由来するヨウ素がわずかに含まれることがある。ヘモグロビンや多くの酵素に含まれる鉄、銅や、一部の酸化還元酵素に含まれるセレン(セレノシステインの形をとる)などもある。タンパク質 フレッシュアイペディアより)

  • タンパク質

    タンパク質から見たリシン

    特定のアミノ酸配列に対して、存在しうる安定な高次構造が複数存在するにもかかわらず、生体内では特定の遺伝子から特定の機能を持つ高次構造をとったタンパク質が合成できるかは、必ずしも明らかではない。クリスチャン・アンフィンセンの実験などで判明した多くのタンパク質が変性した後にもその高次構造の再生が可能なことから、一次構造それ自体が、高次構造のかなりの部分を決めていることは疑いがなく、これは「アンフィンセンのドグマ」と呼ばれる。しかし、先のタンパク質の再生は数時間かかる操作(実際には、二次構造の畳み込みはかなり迅速に起こっていて、三次構造の確定に時間がかかるらしい)であるのに対し、生体内でのタンパク質の合成は数十秒から一分で完了する。さらに、発見された「アンフィンセンのドグマ」に反する事例からも、タンパク質分子を高速に畳み込み、正しい高次構造へと導く因子の存在が考えられている(例:タンパク質ジスルフィドイソメラーゼ、プロリンシストランスイソメラーゼ、分子シャペロン)。また、生体内では間違った立体構造をしているタンパク質はそのタンパク質のLysのアミノ基にポリユビキチンが共有結合で結合した後に、プロテアソームによって分解される。タンパク質 フレッシュアイペディアより)

  • タンパク質

    タンパク質から見たヘモグロビン

    タンパク質の中には複数(場合によっては複数種)のポリペプチド鎖が非共有結合でまとまって複合体(会合体)を形成しているものがあり、このような関係を四次構造と呼ぶ。各ポリペプチド鎖はモノマーまたはサブユニットと呼ばれ、複合体はオリゴマーと言う。各サブユニットには疎水結合や水素結合またはイオン結合が広い領域に多数存在し相補的に働くために方向性があるため、サブユニットは全体で特定の空間配置(コンホメーション)を取る。例えば、ヒトの赤血球に含まれ酸素を運ぶヘモグロビンは、α・β2種類のグロビンというサブユニットがそれぞれ2つずつ結びつく四次構造を持ったタンパク質の一種である。タンパク質 フレッシュアイペディアより)

  • タンパク質

    タンパク質から見た一次構造

    一次構造 - アミノ酸配列タンパク質 フレッシュアイペディアより)

  • タンパク質

    タンパク質から見たオリゴマー

    タンパク質の中には複数(場合によっては複数種)のポリペプチド鎖が非共有結合でまとまって複合体(会合体)を形成しているものがあり、このような関係を四次構造と呼ぶ。各ポリペプチド鎖はモノマーまたはサブユニットと呼ばれ、複合体はオリゴマーと言う。各サブユニットには疎水結合や水素結合またはイオン結合が広い領域に多数存在し相補的に働くために方向性があるため、サブユニットは全体で特定の空間配置(コンホメーション)を取る。例えば、ヒトの赤血球に含まれ酸素を運ぶヘモグロビンは、α・β2種類のグロビンというサブユニットがそれぞれ2つずつ結びつく四次構造を持ったタンパク質の一種である。タンパク質 フレッシュアイペディアより)

  • タンパク質

    タンパク質から見たヒトゲノム

    生体のタンパク質を構成するアミノ酸は20種類あるが、それが3つ連結したペプチドだけでも約203=8,000通りの組み合わせがあり得る。タンパク質については、その種類は数千万種と言われる。生物の遺伝子(ゲノム)から作られるタンパク質ひとそろいのセットは、プロテオームと呼ばれるが、ヒトゲノムの塩基配列解読が終わった今、プロテオームの解析(プロテオミクス)が盛んに進められている。タンパク質 フレッシュアイペディアより)

  • タンパク質

    タンパク質から見たビウレット法

    またより簡便な方法としては、紫外可視近赤外分光法、アミド結合(ペプチド結合)の検出を用いたビウレット法、それにフェノール性水酸基等の検出を組み合わせたローリー法、色素との結合を観測するブラッドフォード法などがある。タンパク質 フレッシュアイペディアより)

  • タンパク質

    タンパク質から見たNMR

    上記のようなタンパク質の高次構造は、X線結晶構造解析、NMR(核磁気共鳴)、電子顕微鏡などによって測定されている。また、タンパク質構造予測による理論的推定なども行われている。タンパク質の立体構造と機能は密接な関係を持つことから、それぞれのタンパク質の立体構造の解明は、その機能を解明するために重要である。いずれ、ほしい機能にあわせてタンパク質の立体構造を設計し、合成できるようになるだろうと考えられている。タンパク質 フレッシュアイペディアより)

  • タンパク質

    タンパク質から見たエントロピー

    温度が変化すると、変性エンタルピー\Delta H_{\rm d}や変性エントロピー\Delta S_{\rm d}は急激に変化するが、それらの変化の大部分は相殺して \Delta G_{\rm d} に寄与しない(エンタルピー・エントロピー相殺)。変性熱容量変化\Delta C_{p,\rm d}は正の値を持ち、タンパク質内部のアミノ酸残基(疎水性アミノ酸が多い)の水和に伴う水和水の熱容量変化によるものであると考えられている。タンパク質 フレッシュアイペディアより)

  • タンパク質

    タンパク質から見た蛋白質構造データバンク

    これまでの研究により構造が解明されたタンパク質については、蛋白質構造データバンクによりデータの管理が行われており、研究者のみならず一般の人でもそのデータを自由に利用、閲覧できる。タンパク質 フレッシュアイペディアより)

184件中 51 - 60件表示

「タンパク質」のニューストピックワード