140件中 41 - 50件表示
  • 回生ブレーキ

    回生ブレーキから見た空気ブレーキ

    回生ブレーキを使用することにより、列車の消費電力を削減(力行時と制動時で相殺)できるほか、フラット発生による乗り心地悪化の抑止や、特に摩擦ブレーキ(空気ブレーキなどの基礎ブレーキ)として踏面ブレーキを採用している車両においては、タイヤ摩耗率の抑制や長い下り勾配区間などでの過熱によるタイヤ弛緩の阻止が期待でき、また地下トンネル内の温度上昇の問題も軽減できる。技術の進歩でさらに摩擦ブレーキ使用率の低下(純電気ブレーキを参照)が実現したことにより、近年登場している新形の電気車(電気機関車と電車)のほとんどが、この回生ブレーキを採用している。回生ブレーキ フレッシュアイペディアより)

  • 回生ブレーキ

    回生ブレーキから見た整流

    交流電化においては比較的変電所の回路が簡単(降圧のみで整流を行わない)で、架線から変電所を通し、電源側への回生も容易である。また、き電区間が長いため(距離が長くなれば列車本数も多くなる)、発生した電力を他の車両が消費する機会も多い。もっとも、国鉄時代に技術が確立された日本の交流車両や交直流車両は、直巻整流子電動機を動力に用いる直流車両に(変圧器と)整流回路を追加した方式である。すなわち、交流側に電力を戻すには、車両側から架線側に周波数と電圧の位相に合わせた電気を架線に戻さなければならないため、可逆コンバータ(インバータ機能を持つ整流回路)を搭載する必要があり、最近まで回生ブレーキはあまり用いられていなかった。近年の半導体の電力変換技術の進歩によって、PWMコンバータにより架線側の周波数と電圧の位相に合わせた電気を架線に戻すことが容易になり、交流区間でも回生ブレーキが一般に使用されるようになった。回生ブレーキ フレッシュアイペディアより)

  • 回生ブレーキ

    回生ブレーキから見た抵抗制御

    発電ブレーキの併設は、近鉄大阪線のように山間で急勾配が長距離に渡って続く区間を擁し、回生失効によるブレーキ力低下が重大事故につながる危険性のある路線で使用される車両を中心として、フェイルセーフ性を確保する目的で行われている。抵抗制御をベースとした制御方式(直巻他励界磁制御、界磁チョッパ制御、界磁添加励磁制御)では元々電圧制御段が抵抗制御であるため、従来通りこれを発電ブレーキの抵抗として使用できるが、電機子チョッパ制御、サイリスタ連続位相制御、VVVFインバータ制御、及び日本では主流に至らなかった回転式位相変換器を用いた交流電動車の場合は、専用に抵抗器を搭載する必要がある。また、抵抗制御を使用している車両であっても通常よりも大容量の抵抗器を搭載するケースが少なくない。回生ブレーキ フレッシュアイペディアより)

  • 回生ブレーキ

    回生ブレーキから見た複巻整流子電動機

    通常、複巻電動機の方がこの「打ち切り」速度が高い。そのため、一般に直巻電動機を使用する電機子チョッパ制御に比べて、複巻電動機を使用する界磁チョッパ制御の方が、理論上は回生効率が低い。回生ブレーキ フレッシュアイペディアより)

  • 回生ブレーキ

    回生ブレーキから見たインバータ

    交流電化においては比較的変電所の回路が簡単(降圧のみで整流を行わない)で、架線から変電所を通し、電源側への回生も容易である。また、き電区間が長いため(距離が長くなれば列車本数も多くなる)、発生した電力を他の車両が消費する機会も多い。もっとも、国鉄時代に技術が確立された日本の交流車両や交直流車両は、直巻整流子電動機を動力に用いる直流車両に(変圧器と)整流回路を追加した方式である。すなわち、交流側に電力を戻すには、車両側から架線側に周波数と電圧の位相に合わせた電気を架線に戻さなければならないため、可逆コンバータ(インバータ機能を持つ整流回路)を搭載する必要があり、最近まで回生ブレーキはあまり用いられていなかった。近年の半導体の電力変換技術の進歩によって、PWMコンバータにより架線側の周波数と電圧の位相に合わせた電気を架線に戻すことが容易になり、交流区間でも回生ブレーキが一般に使用されるようになった。回生ブレーキ フレッシュアイペディアより)

  • 回生ブレーキ

    回生ブレーキから見たダイオード

    この現象は特に直流電化されている路線で発生しやすい。これは交流電化に比べて直流電化では「饋電(きでん)」区間が短いという要因にもよるが、直流変電所において交流から直流への変換にダイオードブリッジ(シリコン整流器)が用いられていることに起因する。ダイオードブリッジは電流の流れる方向を規制するその機器の特性上、交流から直流へ変換することはできても、直流から交流へ逆変換することはできない。そのため回生ブレーキによって発電した電力は、変電所を通じて直流→交流となることはなく、特に対策を施さない場合は同じ変電所の同じき電区間内に電力を消費する他の「負荷」がなければ回生ブレーキは作動せず、「回生失効」となる。回生ブレーキ フレッシュアイペディアより)

  • 回生ブレーキ

    回生ブレーキから見た磁気増幅器

    しかし、複巻電動機の場合、界磁調整器によって逆起電力を積極的に上げていくことができるため、架線電圧が比較的高い状況でも有効電圧を架線に返していることが多い。それに対し、電機子チョッパ制御では、主電動機の状態によっては単に逆電圧をぶつけているだけの状態になってしまうことがあり、制動力は確保できても電力を架線に返していないことが多く、実際の運用では界磁チョッパ制御の方が回生効率が高いと言われている。また、これを直巻電動機に応用した磁気増幅器による直巻主電動機の界磁率調整制御(直巻他励界磁制御)や界磁添加励磁制御も多用されてきた。回生ブレーキ フレッシュアイペディアより)

  • 回生ブレーキ

    回生ブレーキから見た変電所

    鉄道おいては、一部の電気機関車とチョッパ制御・界磁添加励磁制御・VVVFインバータ制御の電車で用いられている。主電動機で発電し、発生した電気エネルギーは架線や第三軌条(以下、電力供給線を架線とする)に戻される。変電所で熱エネルギーに変換して捨ててしまう場合も一般的に回生ブレーキと呼んでいる。回生ブレーキは発電ブレーキの一種であるが、車両からこれらに電気を戻すものを回生ブレーキ、自車内で抵抗器等により熱エネルギーに変換して捨ててしまうものを発電ブレーキと呼び、区別している。回生ブレーキ フレッシュアイペディアより)

  • 回生ブレーキ

    回生ブレーキから見たチョッパ制御

    鉄道おいては、一部の電気機関車とチョッパ制御・界磁添加励磁制御・VVVFインバータ制御の電車で用いられている。主電動機で発電し、発生した電気エネルギーは架線や第三軌条(以下、電力供給線を架線とする)に戻される。変電所で熱エネルギーに変換して捨ててしまう場合も一般的に回生ブレーキと呼んでいる。回生ブレーキは発電ブレーキの一種であるが、車両からこれらに電気を戻すものを回生ブレーキ、自車内で抵抗器等により熱エネルギーに変換して捨ててしまうものを発電ブレーキと呼び、区別している。回生ブレーキ フレッシュアイペディアより)

  • 回生ブレーキ

    回生ブレーキから見た路面電車

    ただし、回生ブレーキを使うためには、車両から送り返される側の電圧が架線側より高くなければ十分な電力回生を行うことができず、ブレーキ性能が低下する現象(回生失効)が発生してしまうため、負荷となる変電所内設備や他の電車(列車)が一定以上必要となる。また、変電所・架線等の事故や集電装置破損時には回路が絶たれるために使用できなくなる問題がある。そのため、他の列車が電力を消費する確率が低く、送電設備にかけるコストも限られるローカル線や、特に安定したブレーキ性能の要求される路面電車や急勾配線等では、あえて発電ブレーキを採用したり、回生ブレーキを採用する場合にも発電ブレーキと併用することが多い。回生ブレーキ フレッシュアイペディアより)

140件中 41 - 50件表示