前へ 1 2 3 4 5 6 7 8 9 10
563件中 1 - 10件表示
  • 遺伝子組み換え作物

    遺伝子組み換え作物から見たカノーラ

    遺伝子組換え作物の栽培国と作付面積は年々増加している。2015年現在、全世界の大豆作付け面積の83%、トウモロコシの29%、ワタの75%、カノーラの24%がGM作物である(ISAAA調査)。遺伝子組換え作物が商業的に本格的に栽培された1996年から2014年までは年々栽培面積が増えてきたが2015年になって初めて前年に比べ栽培面積が1%減少した。なお、限定的ではあるが、青いバラ (サントリーフラワーズ)の商業栽培により2009年には日本も遺伝子組換え作物の商業栽培国となった。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見たダイズ

    日本では、厚生労働省および内閣府食品安全委員会によって、ジャガイモ、ダイズ、テンサイ、トウモロコシ、ナタネ、ワタ、アルファルファおよびパパイアの8作物310種類について、平成29年2月16日現在、食品の安全性が確認されている。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見た花粉

    収量の増加、病虫害抵抗などの雑種強勢を目的に多くのF1(first filial generation:雑種第一代)作物が作られている。自家受粉可能な作物の固定された品種では多くの遺伝子座においてホモ接合状態になっているため、異なる品種を掛け合わせた雑種第一世代であるF1状態になれば多くの遺伝子座においてヘテロ接合状態になって雑種強勢の効果による収量の増加や品質の向上が期待される。F1種子を得ることはトウモロコシの様に雄花と雌花が別れている作物では比較的容易ではあるが、人手がかかる。更に、自家受粉する作物に他家受粉させて安定的に均一なF1種子を得ることは困難である。そのため、花粉を形成しない、花粉に稔性がないという雄性不稔系統があればF1種子が得やすくなる。現在では、様々な作物で雄性不稔系統を用いてF1品種が開発されているが、それでも利用できる作物が限定されている。そこで、遺伝子組換え技術が雄性不稔系統の開発に応用されている。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見たトウモロコシ

    遺伝子組換え作物の栽培国と作付面積は年々増加している。2015年現在、全世界の大豆作付け面積の83%、トウモロコシの29%、ワタの75%、カノーラの24%がGM作物である(ISAAA調査)。遺伝子組換え作物が商業的に本格的に栽培された1996年から2014年までは年々栽培面積が増えてきたが2015年になって初めて前年に比べ栽培面積が1%減少した。なお、限定的ではあるが、青いバラ (サントリーフラワーズ)の商業栽培により2009年には日本も遺伝子組換え作物の商業栽培国となった。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見た厚生労働省

    日本語では、いくつかの表記が混在している。「遺伝子組換作物反対派」は遺伝子組み換え作物、厚生労働省などが遺伝子組換え作物、食品衛生法では組換えDNA技術応用作物、農林水産省では遺伝子組換え農産物などの表記を使うことが多い。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見たトマト

    初めて市場に登場した遺伝子組換え作物と言われるのは、アンチセンスRNA法(mRNAと相補的なRNAを作らせることで、標的となるタンパク質の生合成を抑える手法でRNAi法の一種)を用いて、ペクチンを分解する酵素ポリガラクツロナーゼの産生を抑制したトマト "Flavr Savr" である。他のトマトと比較して、熟しても果皮や果肉が柔らかくなりにくいという特徴を持つ。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見たゲノム

    植物ウイルスが植物細胞内に侵入してゲノムを複製させたり、ゲノムにコードされているタンパク質を生産させたりするためには外皮タンパク質(coat protein)を脱ぐこと(decoating、脱殻)が必要である。もし、侵入した細胞内で外皮タンパク質が大量に存在している場合、decoating してもウイルスのゲノムがすぐに外皮タンパク質に覆われて(recoating)、植物ウイルスのゲノムはゲノムの複製やタンパク質の翻訳に必要な酵素やリボソームと接触できず、ゲノムの複製や翻訳が阻害される。そこで植物細胞に植物ウイルスの外皮タンパク質の遺伝子を導入し、細胞中で外皮タンパク質を大量に生産させてdecoatingを阻害する手法が用いられている。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見たイネ

    イネにはアブラナ科植物のディフェンシンと相同性の高いものは存在しない。そこで、アブラナ科植物の様々なディフェンシンをイネで生産させて、イネの重大な病害であるいもち病や白葉枯病に抵抗性を付与する研究が進められてきた。ディフェンシン遺伝子はイネの緑葉組織特異的発現をするプロモーターと連結されて、イネ(母本品種:どんとこい)に導入されている。同様の研究は多数有り、ワサビ由来のディフェンシンを生産するイネも病害抵抗性を示している。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見た真菌

    これに対する反論として、「自然界ではディフェンシンは必要な時にのみ生産されるため耐性問題がないのであり、ちょうどペニシリンが医薬品として生産される前はペニシリン生産能力を持つアオカビが存在したにも係わらず、ペニシリン耐性菌がいない状況と同じと解釈すべきである」というものがある。『自然界ではディフェンシンは必要な時にのみ生産されるため耐性問題がない』という仮説が出されているが、イネに導入されたカラシナ由来のディフェンシンは細菌感染がなくても種子表層で生産されるものであり、『必要な時』とはどのような時をさすのかも、この仮説の根拠自体も明らかにされていない。なお、ペニシリン耐性菌を例にした反論は、比喩として適切ではない。まず、抗生物質生産菌自体が耐性菌である。ペニシリンは細菌の細胞壁の成分であるペプチドグリカンの生合成を阻害することによって抗菌性を発揮する。しかし、真菌である青カビには、もともとペプチドグリカンがないので、自身には作用しない。一方、抗生物質生産菌自身にも本来は作用するようなカナマイシンやエリスロマイシンなどを生産する菌は、自身が生産する抗生物質が自身に作用しないようにするために、抗生物質や抗生物質の作用点を修飾する耐性遺伝子をもともと保持している。ペニシリンには、生産菌である青カビ以外にも多種多様のペニシリン耐性菌が自然界に当初より存在していた。ペプチドグリカンを持たない真菌類やマイコプラズマはもともとペニシリン耐性菌であり、ペプチドグリカンを持つ細菌の中でもシュードモナス属細菌の様にペニシリン感受性の低いものも多数存在し、ペニシリンのβ-ラクタム環を開裂する酵素β-ラクタマーゼなどによりペニシリン耐性となっている細菌も存在する。ペニシリンが医薬品として生産される以前に、これらの微生物が存在していたことを否定できない以上、「耐性菌がいない状況」というものを想定できない。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見た食品衛生法

    日本語では、いくつかの表記が混在している。「遺伝子組換作物反対派」は遺伝子組み換え作物、厚生労働省などが遺伝子組換え作物、食品衛生法では組換えDNA技術応用作物、農林水産省では遺伝子組換え農産物などの表記を使うことが多い。遺伝子組み換え作物 フレッシュアイペディアより)

前へ 1 2 3 4 5 6 7 8 9 10
563件中 1 - 10件表示

「遺伝子組み換え食品」のニューストピックワード