563件中 11 - 20件表示
  • 遺伝子組み換え作物

    遺伝子組み換え作物から見たデュポン

    ステアリン酸からリノール酸までの不飽和化酵素デサチュラーゼには、ステアリン酸(18:0)のCoAチオエステルであるステアロイルCoA (stearoyl-CoA)からオレイン酸のCoAチオエステルであるオレオイルCoA (oleoyl-CoA)への反応を触媒するΔ9-desaturase (ω9-desaturaseともとオレイン酸残基からリノール酸残基への不飽和化に関与している酵素ω6-desaturase (デサチュラーゼ, Δ12-desaturaseとも: FAD2)がある。このω6-desaturaseの遺伝子(FAD2)の発現を抑制することによってオレイン酸残基の含量を高めている。デュポン社のダイス 260-05系統に関しては、「高オレイン酸ダイズ(GmFad2-1, Glycine max (L.) Merr.)(260-05, OECD UI :DD- Ø26ØØ5-3) 申請書等の概要」により、公表されている。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見たスギ花粉症

    第二世代組換え食品とは、ワクチン等の有用タンパク質の工場として利用することができたり、栄養素を多く含ませたり、食品中の有害物質を低減させたり、消費者にとって利益が目に見えるものである。例えば、B型肝炎予防の食べるワクチンとしてB型肝炎ウイルスの表面抗原をバナナで発現させ経口免疫によってB型肝炎感染を防除する試みがある。油糧種子中の油脂の脂肪酸残基組成を改変することは、第二世代組換え食品開発の初期からの目標であった。また、日本においてはインスリンを分泌誘導して糖尿病になりにくくするコメや経口免疫寛容によるスギ花粉症を低減するコメの開発が先行している。また、鉄分を多く含むコメも開発中である。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見たナタネ

    日本では、厚生労働省および内閣府食品安全委員会によって、ジャガイモ、ダイズ、テンサイ、トウモロコシ、ナタネ、ワタ、アルファルファおよびパパイアの8作物310種類について、平成29年2月16日現在、食品の安全性が確認されている。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見た中国

    1994年にFlavr Savrが発売された後に、GM作物は、1996年にアメリカで大豆の栽培が始められて以降着々と普及してきた。2015年現在、全世界のダイズ作付け面積の83%、トウモロコシで29%、ワタで75%、カノーラで24%がGM作物である(ISAAA調査)。特に食生活の変化による肉類消費の増加を背景とした飼料用穀物の需要増加は、害虫、除草剤への耐性が高く、生産性も高いGM作物の需要増加に繋がっている。ダイズの栽培面積の拡大に関してはBSE問題と関連があるとされている。BSEによって家畜飼料として肉骨粉の使用が敬遠され、それに代わるタンパク質源としてダイズが使用されているからである。その結果、組換え品種の割合の高いダイズの栽培面積が、組換え作物の栽培面積の増加となった。その他、トウモロコシの栽培の増加には近年のバイオエタノール増産と関係があるとされている。アメリカを初め、中国やインド、ブラジル、アルゼンチン、カナダなど各国へ普及しており、2006年時点で22カ国で約1億200万 ha栽培され、更に2007年には23カ国で約1億1430万 ha、2008年には25カ国で約1億2500万 ha、2009年には約1億3400万 ha、2010年には1億4800万 ha、2011年には1億6000万 ha、2012年には日本を除く28カ国において1億7030万 haで、2013年には27カ国において1億7520万 haで、2014年には28カ国において1億8150万 haで、2015年には28カ国において1億7970万 haで栽培された(ISAAA調査)。2015年において初めてその栽培面積が減少した主な理由は2015年の農産物価格の低下と考えられた(ISAAA調査)。ちなみに農林水産省大臣官房統計部によると2009年現在の日本の全耕地面積は約460万 haである。また、国際連合食糧農業機関(Food and Agriculture Organization: FAO)によると、2006年の全世界の栽培面積は耕地面積の約14億1171.7万 haと永年性作物の栽培面積の1億4197.6万 haの計15億5369.3万 haであった1。つまり、2012年には全世界の耕地面積の約12%、耕地面積+永年性作物の栽培面積の約11%において遺伝子組換え作物が栽培されていたことになる。2015年の遺伝子組換え作物生産国は(北米)アメリカ、カナダ、(中南米)メキシコ、ホンジュラス、コロンビア、チリ、アルゼンチン、ウルグアイ、パラグアイ、ブラジル、ボリビア、コスタリカ、(アジア、オセアニア)中国、インド、パキスタン、ミャンマー、フィリピン、ベトナム、バングラデシュ、オーストラリア、(アフリカ)南アフリカ、ブルキナファソ、スーダン、(ヨーロッパ)ポルトガル、スペイン、チェコ、スロバキア、ルーマニアである。なお、日本においては遺伝子組換えバラが商業栽培されている。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見たリンゴ

    リンゴの果実を切断すると、果実の切断面が褐変することが知られている。これは果実の細胞の液胞中のクロロゲン酸やエピカテキンなどのポリフェノールがプラスチド中のポリフェノールオキシダーゼ(PPO: polyphenol oxidase)と細胞の損傷によって接触して、酸化重合されて分子中の共役二重結合が伸び、長波長の光まで吸収することが原因である。そこで、リンゴの果実の褐変を押さえるために4種類のPPOの遺伝子 PPO2, GPO3, APO5, pSR7のそれぞれ394, 457, 457, 453 塩基対のDNA断片を利用したRNAiによってPPO活性が抑制されたリンゴが開発された1。リンゴの品種Golden DeliciousとGranny Smithにおいて実用化され、Artic appleの商標で2015年3月20日にアメリカのFDAによって認可された2。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見たコメ

    第二世代組換え食品とは、ワクチン等の有用タンパク質の工場として利用することができたり、栄養素を多く含ませたり、食品中の有害物質を低減させたり、消費者にとって利益が目に見えるものである。例えば、B型肝炎予防の食べるワクチンとしてB型肝炎ウイルスの表面抗原をバナナで発現させ経口免疫によってB型肝炎感染を防除する試みがある。油糧種子中の油脂の脂肪酸残基組成を改変することは、第二世代組換え食品開発の初期からの目標であった。また、日本においてはインスリンを分泌誘導して糖尿病になりにくくするコメや経口免疫寛容によるスギ花粉症を低減するコメの開発が先行している。また、鉄分を多く含むコメも開発中である。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見たシュードモナス属

    植物にイソキサフルトール耐性を付与するために、シュードモナス属細菌Pseudomonas protegens Pf-5株のhppd遺伝子から1塩基置換されたものが用いられている。この遺伝子は、1塩基置換によるミスセンス変異によって本来のアミノ酸配列(GenBank:AAY92656.1)から1アミノ酸置換されたHPPDをコードしている。この変異型HPPDはDKNによって阻害されにくいのでホモゲンチジン酸が合成される(薬剤とその標的との親和性の低下による耐性化)。なお、植物のHPPDはプラスチドに局在しているが、バクテリアであるP. protegenes由来の変異型HPPDはそのままではプラスチドへ移行できない。そこで、変異型HPPDのアミノ末端側にはプラスチドへ移行できるように移行ペプチドが融合されている。なお、P. protegenes Pf-5株はかつてP. fluorescensに分類されていたため、P. fluorescens Pf-5株と記載されている場合がある。バイエルクロップサイエンス社のイソキサフルトール耐性ダイズに関しては、「除草剤グリホサート及びイソキサフルトール耐性ダイズ(2mepsps, 改変hppd, Glycine max (L.) Merr.)(FG72,OECD UI: MST-FG072-3)申請書等の概要」などで公表されている。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見た大豆

    遺伝子組換え作物の栽培国と作付面積は年々増加している。2015年現在、全世界の大豆作付け面積の83%、トウモロコシの29%、ワタの75%、カノーラの24%がGM作物である(ISAAA調査)。遺伝子組換え作物が商業的に本格的に栽培された1996年から2014年までは年々栽培面積が増えてきたが2015年になって初めて前年に比べ栽培面積が1%減少した。なお、限定的ではあるが、青いバラ (サントリーフラワーズ)の商業栽培により2009年には日本も遺伝子組換え作物の商業栽培国となった。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見た遺伝子

    従来の育種学の延長で導入された1973年以降の遺伝子組換えの手法としては、放射線照射・重イオン粒子線照射・変異原性薬品などの処理で胚の染色体に変異を導入した母本を多数作成し、そこから有用な形質を持つ個体を選抜する作業を重ねるという手順で行われた。最初のGMOが作成された後に科学者は自発的なモラトリアムをその組換えDNA実験に求めて観測した。モラトリアムの一つの目標は新技術の状態、及び危険性を評価するアシロマ会議のための時間を提供することだった。生化学者の参入と新たなバイオテクノロジーの開発、遺伝子地図の作成などにより、作物となる植物に対して、「目的とする」形質をコードする遺伝子を導入したり、「問題がある」形質の遺伝子をノックアウトしたりすることができるようになった。アメリカ合衆国では研究の進展とともに厳しいガイドラインが設けられた。そのようなガイドラインは後にアメリカ国立衛生研究所や他国でも相当する機関により公表された。これらのガイドラインはGMOが今日まで規制される基礎を成している。遺伝子組み換え作物 フレッシュアイペディアより)

  • 遺伝子組み換え作物

    遺伝子組み換え作物から見た特許

    なお、人道的な見地からゴールデンライスの開発者たちは、特許を無償公開し、特許料等の知的財産権に基づく金員の請求をしないことを表明している。ゴールデンライスは自家採種可能であるため、栽培農家は無償で永続的に栽培可能になる。遺伝子組み換え作物 フレッシュアイペディアより)

563件中 11 - 20件表示

「遺伝子組み換え食品」のニューストピックワード