140件中 71 - 80件表示
  • CPU

    CPUから見たチューリング完全

    結果としてノイマン型で先に完成したのは、EDSAC(1949年)やManchester Mark Iの試作機 Baby (1948年)である。EDVACは先に設計が始まっているが、設計者間のごたごたがあって完成が遅れた。また、アイデアレベルではZuse Z3を1941年に開発しているコンラッド・ツーゼもそれ以前にプログラム内蔵方式(書き換えでない点に注意)を考案していた(1936年に特許申請しているが、アメリカに出願した際にチャールズ・バベッジの解析機関との類似を指摘され、特許は成立していない。ツーゼはこのときまでバベッジの業績を知らなかったと思われる。なおZ3は1998年にチューリング完全であったことが示されている)。データとプログラムを同じ記憶装置に格納するかどうかという点が異なる方式として、ハーバード・アーキテクチャがある。これはEDVAC以前に完成したHarvard Mark Iに由来する。同機ではさん孔テープにプログラムを格納した。ノイマン型とハーバード型の大きな違いは、後者が命令とデータの格納場所と扱いを完全に分離していることであり、前者はどちらも同じ記憶領域に格納する。汎用CPUは基本的にノイマン型であるが、ハーバード・アーキテクチャも部分的に採用されている(キャッシュメモリなど)。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たムーアの法則

    CPUの実装と設計を大きく変えた最近の技術革新は、1970年代中頃に登場したマイクロプロセッサである。世界初のマイクロプロセッサは1970年(Intel 4004)であり、広く使われるようになったのは1974年(Intel 8080)であるが、このクラス(8ビット)のCPU実装方法は完全にマイクロプロセッサだけになってしまった。それ以前のCPUが一枚から数枚の基板で実装されていたのに対して、マイクロプロセッサではそれを小さな集積回路(IC)にまとめ、多くの場合シングルチップでCPUを実現している。トランジスタのサイズが小さくなることによってゲートの静電容量が減るので、スイッチとしてもさらに高速化した。そのため、同期式マイクロプロセッサの動作周波数は数十MHzから数GHzが可能となった。また、IC上のトランジスタは技術の向上にしたがって小さくなっていき、CPUを構成するトランジスタ数は飛躍的に多くなって機能も複雑化していった。この傾向はムーアの法則と呼ばれ、CPU(IC)の高速化・集積化を正確にモデル化していた。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たリーク電流

    ムーアの法則は未だに現実でのコンピュータの性能に近似し続けているが、従来型コンピュータの処理性能の向上余地に限界が近づきつつあることが懸念されている。これまで同様に電子回路を縮小し続けてきたが、光学的な手法で電子回路を焼き付けるには紫外線からやがてはX線に移行する必要があり、この光学的問題以前に、すでに21世紀に入ってからの市販製品でも量子論的効果が現れはじめており、エレクトロマイグレーションやリーク電流のような問題が大きくなっているためである。さらなる高性能化のために、並列コンピューティングなどの手法によるノイマン型での高性能化、ジョセフソンコンピュータなど量子技術の採用、非ノイマン型化、この半世紀のコンピュータを支えた電子技術から、新たな物理現象に途を求める光コンピューティング、量子コンピュータや分子コンピュータのような新たな原理に基づくコンピュータ、などが研究されている。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たビットスライスプロセッサ

    上記の分類に当てはまらないものとして、過去には、互いに結合し自由にビット長を増やす事ができる方式のCPUがあり、これはビットスライスプロセッサと呼ばれた。代表的な製品にAMDのAM2900シリーズなどが挙げられる。AM2901は、スイス連邦工科大学のLilithワークステーション等に使用されていた。またデータをバイト単位で扱うCPU(バイトマシン)の他、ワード単位で扱うCPU(ワードマシン)もある(日本電気のACOS-6など)。CPU フレッシュアイペディアより)

  • CPU

    CPUから見た矩形波

    ほとんどのCPU(もっと言えばほとんどの順序回路)は同期式である。つまり、CPUは同期信号にしたがって動作するよう設計されている。この信号は「クロック信号」として知られていて、一定周期の矩形波の形であることが多い。電気信号の伝播速度からCPU内の信号経路の長さを考慮してクロック信号の周波数が決定される。この周波数は信号伝播の最悪ケースを考慮して決めなければならない。最悪ケースを考慮して周波数を決定すれば、CPU全体が波形のエッジ部分で動作するよう設計でき、CPUの設計を簡略化できると同時にトランジスタ数も減らすことができる。しかし、この設計手法の欠点としてCPU全体が最も遅い部分を待つように設計しなければならず、全体の高速化がその遅い部分によって制限される。この制限に対処するために命令パイプラインやスーパースケーラといった手法が採られてきた。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たハーバード・アーキテクチャ

    結果としてノイマン型で先に完成したのは、EDSAC(1949年)やManchester Mark Iの試作機 Baby (1948年)である。EDVACは先に設計が始まっているが、設計者間のごたごたがあって完成が遅れた。また、アイデアレベルではZuse Z3を1941年に開発しているコンラッド・ツーゼもそれ以前にプログラム内蔵方式(書き換えでない点に注意)を考案していた(1936年に特許申請しているが、アメリカに出願した際にチャールズ・バベッジの解析機関との類似を指摘され、特許は成立していない。ツーゼはこのときまでバベッジの業績を知らなかったと思われる。なおZ3は1998年にチューリング完全であったことが示されている)。データとプログラムを同じ記憶装置に格納するかどうかという点が異なる方式として、ハーバード・アーキテクチャがある。これはEDVAC以前に完成したHarvard Mark Iに由来する。同機ではさん孔テープにプログラムを格納した。ノイマン型とハーバード型の大きな違いは、後者が命令とデータの格納場所と扱いを完全に分離していることであり、前者はどちらも同じ記憶領域に格納する。汎用CPUは基本的にノイマン型であるが、ハーバード・アーキテクチャも部分的に採用されている(キャッシュメモリなど)。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たプログラムカウンタ

    最初の段階であるフェッチとは、実行すべき命令(ある数値または数値の並び)をプログラムの置かれたメモリから取り出すことである。メモリ上の実行すべき命令の位置はプログラムカウンタで指定される。プログラムカウンタはCPUが現在見ているプログラム上の位置を示しているとも言える。命令フェッチに使用されると、プログラムカウンタはフェッチしたぶんだけ増加させられる。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たボルト (単位)

    当初はリレーのような数十ボルトの動作電圧だったが、1980年代には5Vがデジタルコンピュータの標準的な動作電圧となり、1990年代には内部回路が3V程度の低電圧化を取り入れはじめ、外部との信号線でも同様の低電圧化が行なわれる頃には、CPUの内部ではさらに低い電圧が採用されるようになった。2009年現在では内部的には1V未満まで低電圧化が進められており、ノイズ耐性を考慮すればほぼ限界であると考えられている。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たx86

    専用の電子回路に比べると実行速度は遅いが、プログラムを変えるだけで多様な処理が行えることから、非常に多岐にわたる用途に使用でき、専用回路に比べ設計、修正が容易である。このため、CPUはおよそあらゆるシステムに内蔵され、現代の産業や生活の屋台骨を支える存在にまで普及している。現在最も普及しているCPUアーキテクチャとしてARMアーキテクチャが挙げられる。ARMアーキテクチャは1991年から数え2008年初頭に出荷個数が100億個を超えるなど、家電製品から工業製品、携帯機器などに至る多くのシステムに組み込まれ、機器制御を司っている。また、PCなど、現在の汎用コンピュータ製品における多くのシステムのメインCPUにx86アーキテクチャが用いられており、インテルのx86系CPU出荷数は1978年6月9日の8086発売から2003年までの25年で10億個を越えた。CPU フレッシュアイペディアより)

  • CPU

    CPUから見た時計

    一般的な家電製品や小さなリモコン、電卓や時計など、ローエンドの組み込みシステムに広く用いられている。これらの多くには広義のCPUの中でも8ビットや16ビットのMCUと呼ばれるものが使用されている。CPU フレッシュアイペディアより)

140件中 71 - 80件表示