138件中 71 - 80件表示
  • CPU

    CPUから見たコンピュータ

    CPU(シーピーユー、)、中央処理装置(ちゅうおうしょりそうち)は、コンピュータにおける中心的な処理装置(プロセッサ)。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たマルチコア

    1990年代後半から21世紀に入って、パソコン用CPUで一般化した(メインフレームではもっとずっと前から一般的だったが)、いくぶん新たなCPU高速化技術についてはマルチコアやVLIW、スーパースケーラなどがある。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たマイクロチップ

    現在のCPUは、部品としてはプロセッサの1種である。プロセッサの多くはマイクロチップとして実装されており、マイクロプロセッサやMPU (Micro Processing Unit) と呼ばれる。また、算術演算機能を強化し信号処理に特化したデジタルシグナルプロセッサ (DSP) や、メモリや周辺回路を搭載し組込み機器制御を目的としたマイクロコントローラ(マイコン)などの展開種も登場している。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たステータスレジスタ

    フェッチとデコードの次は、実行ステップが行われる。このステップでは、CPUの多くの部分が接続され(たとえばマルチプレクサを切り替えるなどして)指定された操作を実行する。たとえば、加算を要求されている場合、加算器が所定の入力と接続され、出力と接続される。入力は加算すべき数値を提供し、出力には加算結果が格納される。加算結果が大きすぎてそのCPUに扱えない場合、算術オーバーフローフラグをフラグレジスタ(ステータスレジスタ)にセットする(RISCではフラグレジスタが存在しない場合もある)。入力や出力にはいろいろなものが使用される。演算結果が一時的かあるいはすぐに利用される場合にはレジスタと呼ばれる高速で小さなメモリ領域に格納される。メモリも入力や出力に使われる。レジスタ以外のメモリは低速だが、コスト的には一般的なメモリの方が安価であり大量のデータを格納できるため、コンピュータには必須である。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たチューリング完全

    結果としてノイマン型で先に完成したのは、EDSAC(1949年)やManchester Mark Iの試作機 Baby (1948年)である。EDVACは先に設計が始まっているが、設計者間のごたごたがあって完成が遅れた。また、アイデアレベルではZuse Z3を1941年に開発しているコンラッド・ツーゼもそれ以前にプログラム内蔵方式(書き換えでない点に注意)を考案していた(1936年に特許申請しているが、アメリカに出願した際にチャールズ・バベッジの解析機関との類似を指摘され、特許は成立していない。ツーゼはこのときまでバベッジの業績を知らなかったと思われる。なおZ3は1998年にチューリング完全であったことが示されている)。データとプログラムを同じ記憶装置に格納するかどうかという点が異なる方式として、ハーバード・アーキテクチャがある。これはEDVAC以前に完成したHarvard Mark Iに由来する。同機ではさん孔テープにプログラムを格納した。ノイマン型とハーバード型の大きな違いは、後者が命令とデータの格納場所と扱いを完全に分離していることであり、前者はどちらも同じ記憶領域に格納する。汎用CPUは基本的にノイマン型であるが、ハーバード・アーキテクチャも部分的に採用されている(キャッシュメモリなど)。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たTomasuloのアルゴリズム

    複雑さ、大きさ、構造、一般的な形状はこの60年間で劇的に変化したが、高性能化の基本的なコンセプトは、だいたい1960年代に初めて現れた、というものが多い。たとえば、アウト・オブ・オーダー実行の方式であるscoreboardingもTomasuloのアルゴリズムも、最初に考案されたのは1960年代である。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たムーアの法則

    1970年代中頃に登場したマイクロプロセッサにより、CPUなどに使われるプロセッサは1チップの大規模集積回路(LSI IC)に集積されるようになった。当初は当時の微細化の限界から4ビットや8ビットのプロセッサであったが、1980年代には16ビットや32ビットで、それに加えプロセス保護などメインフレームに追いつくような機能を持つものや、周辺機能やメモリ等を集積した、いわゆるワンチップマイコンなども多数現れた。もうひとつの特色はMOS(特に1980年代後半からは、CMOS)であることである。原理上、消費電力は抑えられるが、当初は遅かったことから、電卓など消費電力が重要で速度が重要でない分野から広まったが、微細化が進めば進むほど静電容量が減り高速化できるという特長があり(デナード則)、動作周波数は当初の1MHz程度から、2010年代には数GHzまで上がっている。微細化は、より多くのゲートを載せることができる、ということでもあり、より複雑で高性能なプロセッサが作られるようにもなった(ただし近年は、性能向上以上に複雑化が進む傾向である(ポラックの法則))。微細化による集積度の向上の傾向はムーアの法則により定性的にモデル化されている。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たビットスライスプロセッサ

    上記の分類に当てはまらないものとして、過去には、互いに結合し自由にビット長を増やす事ができる方式のCPUがあり、これはビットスライスプロセッサと呼ばれた。代表的な製品にAMDのAM2900シリーズなどが挙げられる。AM2901は、スイス連邦工科大学のLilithワークステーション等に使用されていた。またデータをバイト単位で扱うCPU(バイトマシン)の他、ワード単位で扱うCPU(ワードマシン)もある(日本電気のACOS-6など)。CPU フレッシュアイペディアより)

  • CPU

    CPUから見た矩形波

    ほとんどのCPU(もっと言えばほとんどの順序回路)は同期式である。つまり、CPUは同期信号にしたがって動作するよう設計されている。この信号は「クロック信号」として知られていて、一定周期の矩形波の形であることが多い。電気信号の伝播速度からCPU内の信号経路の長さを考慮してクロック信号の周波数が決定される。この周波数は信号伝播の最悪ケースを考慮して決めなければならない。最悪ケースを考慮して周波数を決定すれば、CPU全体が波形のエッジ部分で動作するよう設計でき、CPUの設計を簡略化できると同時にトランジスタ数も減らすことができる。しかし、この設計手法の欠点としてCPU全体が最も遅い部分を待つように設計しなければならず、全体の高速化がその遅い部分によって制限される。この制限に対処するために命令パイプラインやスーパースケーラといった手法が採られてきた。CPU フレッシュアイペディアより)

  • CPU

    CPUから見たハーバード・アーキテクチャ

    結果としてノイマン型で先に完成したのは、EDSAC(1949年)やManchester Mark Iの試作機 Baby (1948年)である。EDVACは先に設計が始まっているが、設計者間のごたごたがあって完成が遅れた。また、アイデアレベルではZuse Z3を1941年に開発しているコンラッド・ツーゼもそれ以前にプログラム内蔵方式(書き換えでない点に注意)を考案していた(1936年に特許申請しているが、アメリカに出願した際にチャールズ・バベッジの解析機関との類似を指摘され、特許は成立していない。ツーゼはこのときまでバベッジの業績を知らなかったと思われる。なおZ3は1998年にチューリング完全であったことが示されている)。データとプログラムを同じ記憶装置に格納するかどうかという点が異なる方式として、ハーバード・アーキテクチャがある。これはEDVAC以前に完成したHarvard Mark Iに由来する。同機ではさん孔テープにプログラムを格納した。ノイマン型とハーバード型の大きな違いは、後者が命令とデータの格納場所と扱いを完全に分離していることであり、前者はどちらも同じ記憶領域に格納する。汎用CPUは基本的にノイマン型であるが、ハーバード・アーキテクチャも部分的に採用されている(キャッシュメモリなど)。CPU フレッシュアイペディアより)

138件中 71 - 80件表示

「CPU」のニューストピックワード